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Cognitive Effects of Endocrine-Disrupting Chemicals in Animals

Susan L. Schantz and John J. Widholm

Department of Veterinary Biosciences and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

There is increasing concern about chemical
pollutants that have the ability to act as hor-
mone mimics. Because of a structural similar-
ity with an endogenous hormone, an ability
to interact with hormone transport proteins,
or an ability to disrupt hormone metabolism,
these chemicals have the potential to mimic,
or in some cases block, the effects of the
endogenous hormone. In either case, these
chemicals serve to disrupt the normal actions
of endogenous hormones and thus have
become known as “endocrine disruptors.” A
large number of environmental pollutants
including phthalates, alkylphenolic com-
pounds, polychlorinated biphenyls (PCBs),
polychlorinated dibenzodioxins, organochlo-
rine pesticides, bisphenol A, and heavy met-
als including lead, mercury, and cadmium
have been shown to disrupt endocrine func-
tion in animals. Because hormonally medi-
ated events play a central role in central
nervous system (CNS) development and
function, there is speculation that some of
the cognitive deficits that arise from develop-
mental exposure to environmental chemicals
may be the result of endocrine disruption.

For example, thyroid hormone is essen-
tial for proper neuronal proliferation, cell
migration, and differentiation in the devel-
oping mammalian brain (1). Disruption of
the thyroid system during development has
been shown to result in permanent changes
in neurochemical (2), morphologic (3,4),
and neurobehavioral end points (5–7).
There are a number of environmental conta-
minants that have been shown to affect thy-
roid system function (8). One example is
PCBs. PCBs alter thyroid function through

multiple mechanisms including direct toxic
effects to the thyroid gland, induction of
thyroid hormone metabolism via UDP-glu-
curonyl transferase, and interaction with
thyroid hormone carrier proteins (9).
Further complicating matters is the fact that
PCBs have multiple endocrine effects,
impacting not only thyroid hormones but
the gonadal (10–12) and adrenal steroid sys-
tems (13) as well. PCBs are just one example
of the many environmental contaminants
capable of disrupting one or more endocrine
systems. When one considers that human
populations have body burdens of multiple
contaminants capable of affecting multiple
endocrine systems, the potential human
health risk could be significant. Therefore,
an understanding of the endocrine-disrupt-
ing potential of these chemicals and subse-
quent neurobehavioral changes that result is
an important task facing environmental toxi-
cologists, endocrinologists, and behaviorists. 

The goals of the current review are to
discuss the evidence for cognitive changes
resulting from exposure of laboratory ani-
mals to chemicals classified as endocrine dis-
ruptors and to examine the extent to which
these cognitive changes appear to be medi-
ated by changes in hormonal function. The
discussion is focused on the three hormonal
systems—the gonadal steroids, the thyroid
hormones and the glucocorticoids, for which
the richest data set on endocrine disruption
exists. Although other hormones, growth
hormone in particular, play important roles
in brain development and behavior, rela-
tively little is known about the effects of
chemical pollutants on other hormonal

systems. We begin by reviewing the roles of
the gonadal steroids, thyroid hormones, and
glucocorticoids in brain development and
function. We then review the endocrine
changes and cognitive effects that have been
reported for several major chemical pollu-
tants including PCBs, dioxins, and lead, dis-
cuss the evidence for causal relationships
between the endocrine disruption and cogni-
tive effects, and conclude by highlighting
important directions for further research. 

Role of Hormones in Brain
Development and Cognition
Estrogens and androgens. The role of gonadal
steroids in the development of brain areas
involved in reproduction has been recognized
for many years (14). The brain is particularly
sensitive to the differentiating effects of
gonadal hormones during a critical period
early in development. The absence of testicu-
lar hormones during this period allows the
development of a female pattern of behavior
and neuroendocrine function. Conversely,
the presence of testicular hormones allows
the development of a male pattern. In the rat,
the critical period for sexual differentiation of
the brain starts a few days before birth and
ends approximately 10 days after birth. The
brain is exquisitely sensitive to estrogens and
androgens during this time. Female rats
treated with testosterone during the critical
period permanently lose the capacity to
secrete leutinizing hormone in a cyclical fash-
ion in response to estrogen stimulation and
do not show typical female reproductive
behaviors, such as lordosis. Conversely, they
have the capacity to exhibit masculine sexual
behaviors in response to administration of
testosterone. Male rats castrated during the
critical period are unable to display typical
male sexual behaviors after administration of
testosterone in adulthood, but will show lor-
dosis in response to estrogen treatment. 

In the rat, sexual differentiation primarily
occurs through the aromatization of testos-
terone to estrogen locally within the brain
(14). Estrogen then acts to organize neural
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components in the hypothalamus and preop-
tic area in a male-specific pattern. In the
absence of testosterone, the hypothalamus
develops in a female-specific pattern. The
most striking sex difference in brain
anatomy is present in an area within the
medial preoptic area (MPOA) known as the
sexually dimorphic nucleus of the preoptic
area (SDN-POA). This nucleus is 5- to
7-fold larger in male rats than in females
(15). The nucleus is dimorphic not only in
terms of its volume, but also in terms of the
neurotransmitters in the cell bodies of the
neurons comprising the nucleus and in the
fibers innervating it (16). Another region,
the ventral medial nucleus of the hypothala-
mus (VMN), is also sexually dimorphic (17).
The roles of these hypothalamic nuclei in
reproductive behavior are not completely
understood, but the VMN appears to be
involved in the lordosis response in female
rats (17), and the SDN-POA has been
implicated in the execution of coital behav-
ior in male rats (16). Some aspects of sexual
differentiation of the brain, including the
development of sexually dimorphic patterns
of social play, appear to be regulated by the
direct actions of androgens in the brain,
rather than by the aromatization of andro-
gens to estrogen (18). A similar process of
sexual differentiation appears to occur in the
brains of all mammalian species including
humans. However, in other species, particu-
larly nonhuman primates and humans, the
mechanisms are not as well understood.

Recently it has become clear that early
exposure to estrogens and androgens has
important actions in areas of the brain that
are not involved in reproduction. One of
these is the hippocampus, which plays an
important role in learning and memory, par-
ticularly spatial learning and memory (19).
Sex differences in spatial learning have been
reported by many investigators and appear
to be present in humans as well as in animals
(20). In general, men outperform women on
tasks that require spatial skills. Male rodents
also make fewer errors than females on spa-
tial learning tasks. The work of Williams et
al. (21) suggests that these differences could
be due to differences in the way males and
females process spatial information. Male
rats appear to attend primarily to geometric
cues (the shape of the environment), whereas
females use a combination of landmarks and
geometry to locate a target. 

As reviewed by McEwen et al. (19), sex
differences in hippocampal morphology also
exist. These include differences in the num-
ber of spines on the apical dendritic shafts of
CA3 pyramidal cells (22), as well as differ-
ences in the number of mossy fiber synapses
to these cells (23). Male rats have more
spines on the apical dendrites and more

mossy fiber synapses. They also have a larger
and more asymmetric dentate gyrus (24).
Neonatal testosterone treatment causes the
female dentate gyrus to appear masculine and
also improves the spatial learning ability of
female rats (24). In contrast, neonatal castra-
tion of male rats results in a female pattern of
spatial learning (20). 

The rat hippocampus shows a transient
increase in estrogen receptors for a short
period during perinatal development (25).
This coincides with transient expression of
the aromatase that converts testosterone to
estrogen (26). Thus, hippocampal estrogen
receptors of male rats are exposed to locally
generated estrogen during a brief period
early in development. Just as in the hypo-
thalamus, this appears to lead to sexual dif-
ferentiation of hippocampal structure and
function. Exposure to chemicals that perturb
the delicate balance of gonadal hormones
during early development could result in
changes in hippocampal morphology and
alter the normal pattern of male/female dif-
ferences in spatial learning.

Estrogen receptors are sparsely distrib-
uted in the adult hippocampus, but recent
research indicates that estrogen continues to
play an important role in the hippocampus
during adulthood. Morphologic studies have
shown that estrogen induces cyclical changes
in dendritic spine density on pyramidal cells
in the CA1 region of the hippocampus in
female rats (27). More recent in vitro studies
have demonstrated that the estradiol-
induced increase in spine density increases
the sensitivity of the cells to N-methyl-D-
aspartate receptor-mediated synaptic input
(28). There are a number of studies suggest-
ing that learning ability varies over the
course of the estrous cycle in female rats
(29–33), although several other studies have
not found any changes (34,35). In addition,
estrogen replacement therapy appears to pre-
serve memory function in post-menopausal
women (36,37), as well as in ovariectomized
female rats (38). Thus, exposure to environ-
mental chemicals that have estrogenic or
antiestrogenic actions could also impact cog-
nitive function during adulthood and aging. 

There are two estrogen receptor subtypes
(ERα and ERβ) that are differentially distrib-
uted throughout the CNS. Some regions—
including the neurons of the olfactory bulb;
supraoptic, paraventricular, suprachiasmatic,
and tuberal hypothalamic nuclei; zona
incerta; ventral tegmental area; and cerebellar
Purkinje cells—contain only ERβ (39). In
contrast, only ERα is found in the ventrome-
dial hypothalamic nucleus and the subfornical
organ. Neurons in many other brain regions
contain both ERα and ERβ. However, the
relative amounts of the two receptor subtypes
vary by region. For example, Shughrue et al.

(39) found that the cerebral cortex and hip-
pocampus contain both ERα and ERβ, but
the relative amount of ERβ is much greater
than ERα in these brain regions. Region-spe-
cific expression of ERα and ERβ may be
important in determining the physiologic
responses of neurons to estrogen action.
Thus, if different environmental estrogens
have different affinities for the two ER sub-
types, they could potentially affect brain
development and behavior in very different
ways.

Thyroid hormones. The actions of thy-
roid hormones are vital for normal brain
development (1). Thyroid hormones are
involved in regulating many aspects of ner-
vous system development including neuronal
proliferation, cell migration, and differentia-
tion. Neonatal hypothyroidism results in
delayed myelinogenesis, alterations in cell
migration, delayed or impaired neuronal dif-
ferentiation and synaptogenesis, and alter-
ations in neurotransmitter function (2–4).
These morphologic and neurochemical
changes are associated with permanent
impairments in neurobehavioral function,
including delayed reflex development,
changes in motor activity and emotionality,
and deficits in learning and memory
(5,6,40). Although thyroid hormone imbal-
ances during adulthood can also lead to cog-
nitive and behavioral disturbances, these are
usually completely reversible with appropri-
ate hormone therapy. 

Many of the biochemical and morpho-
logic changes observed in the brains of
neonatally hypothyroid rats appear to
recover with time, but several brain regions,
including the hippocampus, show persistent
morphologic changes in response to early
thyroid hormone manipulations (41). Early
hypothyroidism results in hippocampal CA3
pyramidal cells with markedly stunted den-
dritic trees (42). The CA3 cells originate
during the early embryonic period (43), but
undergo extensive dendritic remodeling dur-
ing the second and third postnatal weeks
(42). The timing of these changes coincides
with peak levels of thyroid hormones (44)
and thyroid hormone receptor (45), which
may explain the unusual sensitivity of the
CA3 pyramidal cells to neonatal thyroid hor-
mone imbalances. In contrast, hippocampal
CA1 pyramidal cells do not undergo exten-
sive dendritic restructuring during the post-
natal thyroid hormone surge and appear to
be less affected by neonatal thyroid hormone
manipulations (42). Neonatal hypothy-
roidism also reduces the number of dentate
gyrus granule cells (46) and impairs their
dendritic arborization (42,47). 

The cognitive effects of neonatal hypothy-
roidism reflect the fact that the hippocampus
is one of the most severely damaged brain
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regions. Spatial learning and memory is
severely impaired on the radial arm maze (5)
and Morris water maze (6), as well as on
other complex mazes (40). Congenitally
hypothyroid children have cognitive deficits
not unlike those observed in neonatally
hypothyroid rats. These include impaired
memory and spatial perception, as well as
attentional problems (1). Subtle problems
with hearing, speech, and word comprehen-
sion are also common. A large number of
environmental chemicals are known or sus-
pected of altering thyroid hormone function
(8). Exposure to these chemicals during early
development could potentially interfere with
brain development and cause permanent
deficits in cognitive function.

Glucocorticoids. Glucocorticoids also have
a profound affect on brain development. In
the rat, the first 2 weeks of life are character-
ized by low basal levels of corticosterone and
hyporesponsiveness of the hypothalamic-pitu-
itary-adrenal (HPA) axis to stressful stimuli
(48). During this period, the brain is very
sensitive to environmental or chemical manip-
ulations. Various environmental stimuli
including electric shock, heat stress, exposure
to novelty, and handling of the neonate have
been shown to produce long-lasting or perma-
nent changes in brain glucocorticoid receptor
expression and behavior. The best studied
among these is the effect of early handling
(49). Rats handled during infancy have a per-
manent increase in glucocorticoid receptors in
the hippocampus, which results in greater hip-
pocampal sensitivity to glucocorticoids and
better regulatory control of the stress response.
Less corticosterone is secreted in response to
stress, and levels return to baseline more
rapidly. Over the life span, this translates into
lower cumulative exposure to glucocorticoids,
which results in less hippocampal cell loss and
less decline in memory function during aging
(50). Interestingly, mothers of handled pups
spend more time licking and manipulating
their pups, and it is these alterations in mater-
nal behavior that seem to mediate the han-
dling effect on glucocorticoid function (49).

Unlike the positive effects of neonatal
handling, exposure to elevated levels of glu-
cocorticoids during the period when the
HPA axis is normally quiescent can have
detrimental effects on brain development
(48). Cell proliferation ceases early, and
axonal outgrowth, myelination, formation of
dendritic spines, and synaptogenesis are
retarded. Some of these effects may be
reversible if the exposure to exogenous glu-
cocorticoids ends early enough, but recovery
is seldom complete. As with thyroid hor-
mone imbalances, these changes in brain
morphology are accompanied by deficits in
behavioral function, including deficits in
learning and altered motor activity (48). 

Many studies have shown that hip-
pocampal development and function are
exquisitely sensitive to the circulating levels
of glucocorticoids. Formation of the granule
cells of the dentate gyrus, in particular, is
closely linked to adrenal steroids (51).
Immediately before birth the levels of gluco-
corticoids are high and the number of den-
tate gyrus granule cells that incorporate
3H-thymidine is low. As discussed above,
after birth, the levels of adrenal steroids drop
and remain low for roughly 2 weeks. During
this period, the number of dentate gyrus
granule cells that incorporate 3H-thymidine
increases dramatically. As glucocorticoid lev-
els rise again at the end of the hyporespon-
sive period, granule cell proliferation
diminishes once again. In adulthood, the
levels of adrenal steroids are relatively high
and the rate of granule cell proliferation
remains low. Injecting either developing
pups or adult rats with corticosterone
reduces the rate of granule cell proliferation,
whereas removal of the adrenal gland
increases proliferation. Paradoxically, adrenal
steroids also suppress granule cell death.
Throughout the life of the rat, the level of
adrenal steroids correlates negatively with
the number of degenerating dentate gyrus
granule cells. In the adult animal, adrenalec-
tomy results in massive granule cell death.

Normal levels of circulating adrenal
steroids appear to be necessary for accurate
performance on spatial tasks, which is not
surprising given the role of the hippocampus
in spatial learning and memory. Either
increases or decreases in corticosterone impair
spatial learning in the rat. Adrenalectomy has
been shown to impair performance on the
radial arm maze (52) and the Morris water
maze (53). Conversely, restraint stress, which
elevates corticosterone levels, also impairs
radial arm maze performance (54). Chemicals
that alter the levels of adrenal steroids or
mimic or block their actions, would have the
potential to alter dentate gyrus morphology
and disturb spatial learning and memory.
Although exposure during development is
more likely to lead to permanent functional
changes, cognitive deficits are possible regard-
less of whether exposure occurs during devel-
opment or in adulthood.

Interactions between hormone systems. It
is important to note that individual hormonal
systems interact with each other in complex
ways. Thus, the possibility exists for alter-
ations in one specific hormonal pathway to
cascade through multiple systems, producing
nervous system effects that are complex and
difficult to interpret (55). For example, thy-
roid hormones appear to be involved in medi-
ating the effects of handling on glucocorticoid
receptor expression (49). Handling activates
the hypothalamic-pituitary-thyroid axis,

increasing the levels of thyroid hormones.
This results in increased 5-hydroxytryptamine
turnover in the hippocampus, which in turn
acts to permanently increase hippocampal
glucocorticoid receptor expression. Direct
neonatal treatment with thyroid hormone has
the same effect, whereas treatment with the
goitrogen propylthiouracil blocks the increase
in hippocampal glucocorticoid receptor bind-
ing usually observed after handling (49). 

Alterations in thyroid hormones during
the critical period can also affect androgen-
dependent sexual differentiation of the brain.
Hyperthyroidism shortens the critical period
for androgen exposure, whereas hypothy-
roidism prolongs it. In addition to these indi-
rect effects, there is recent evidence that
thyroid hormone may also inhibit estrogen’s
actions directly at the genomic level (56).
Thus, agents that increase thyroid hormone
bioavailability or mimic the actions of thyroid
hormone might be expected to attenuate
estrogen-mediated responses such as sexual
differentiation of the brain, whereas agents
that reduce or block thyroid hormone action
would be expected to have the opposite effect. 

Effects of Endocrine-Disrupting
Chemicals on Cognition
A large number of synthetic chemicals have
been identified as known or suspected
endocrine disruptors (57). For the most part,
these are compounds that have estrogenic or
antiestrogenic actions (58) and/or disrupt
thyroid function (8). A much smaller num-
ber of chemicals have been evaluated for
effects on other endocrine systems such as
androgens and adrenal steroids. Keith (59)
has compiled a comparative list of environ-
mental endocrine disruptors based on lists
obtained from scientists at the U.S.
Environmental Protection Agency (U.S.
EPA), the Centers for Disease Control and
Prevention (CDC), and the World Wildlife
Fund (WWF). Although many chemicals
appear on all three lists, there are also signifi-
cant differences among the three lists. A total
of 103 different chemicals are represented
with 60, 48, and 68 chemicals appearing on
the U.S. EPA, CDC, and WWF lists, respec-
tively. The discrepancies between the three
lists highlight the fact that we do not have
adequate scientific data on many potential
endocrine disruptors. Because of the limited
scope of this review, we will limit our discus-
sion primarily to those chemicals that all
three sources identified as environmental
endocrine disruptors. These fall into several
broad chemical classes including phthalates,
alkylphenolic compounds, organochlorine
pesticides, PCBs, dioxins and furans, bisphe-
nol A, and heavy metals (Table 1). 

The lack of good scientific data on
endocrine disruptors becomes even more
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obvious when one attempts to investigate
the effects of these chemicals on cognitive
function. Despite the fact that hormones
play a central role in CNS development and
function, few endocrine disruptors have been
evaluated for cognitive effects in animal mod-
els, and few, if any, mechanistic studies
directly relating changes in cognitive function
to altered endocrine status have been con-
ducted. Table 1 lists individual endocrine
disruptors by chemical class, identifies some
of the hormonal systems they act on, and
indicates whether cognitive function has been
assessed. Because few or no data exist for
most of the chemicals on the list, it will be
necessary to focus this discussion on a few
examples for which cognitive effects have
been documented.

PCBs and dioxins. PCBs and dioxins are
widely dispersed, environmentally persistent
organic compounds. PCBs were manufac-
tured commercially in the United States
from the 1930s through the 1970s and were
widely used as dielectric fluids in capacitors
and transformers (60). Dioxins are struc-
turally similar compounds that are formed
as unwanted by-products during the manu-
facture of certain herbicides and wood prod-
ucts. Dioxins are also formed during
combustion of chlorinated compounds and
are found in fly ash from municipal and
hospital incinerators (61). 

The endocrine-disrupting properties and
cognitive effects of PCBs and dioxins have
been extensively studied in animal models.
Both have complex effects on multiple
endocrine systems (10,62). PCBs and dioxins
have been shown to alter thyroid function in
rodents by multiple mechanisms, including
direct toxic effects on the thyroid gland,
induction of thyroid hormone metabolism
via the UDP-glucuronyl transferases, and
interactions with thyroid hormone plasma
transport proteins, particularly transthyretin
(9). A number of investigators have evaluated
the effects of maternal PCB exposure on thy-
roid function of rat pups (63–65). Pup serum
thyroxine (T4) levels are markedly reduced by
PCB or dioxin exposure, but the levels of the
active form of the hormone, triiodothyronine
(T3), are generally unchanged, or only
slightly reduced. A relationship between
exposure to dioxins and PCBs and alterations
in thyroid hormones has also been reported
in human infants (66). Infants exposed to
higher levels of PCBs and dioxins had lower
free T4 levels and higher thyroid-stimulating
hormone levels. Thyroid hormone is trans-
ported to the brain as T4 and then converted
locally to T3 (67). Based on this knowledge,
it has been argued that the dramatic reduc-
tions in serum T4 reported in rats after peri-
natal PCB exposure could place the brain at
special risk for hypothyroid-related effects

(68). However, recently Morse et al. (64)
found that, although both serum and brain
T4 levels were reduced after fetal PCB expo-
sure, brain T3 levels remained normal or near
normal. To complicate the situation even
further, a recent report suggests that PCBs
may actually act as thyroid hormone mimics
in the brain (69). Exposure to the PCB mix-
ture Aroclor 1254 caused marked reductions
in circulating T4 concentrations, yet elevations
in the expression of two key thyroid-hormone
responsive genes, RC3/neurogranin and
myelin basic protein, were observed in the
developing brain. Chemical goitrogens such as
propylthiouracil and methimazole reduce the
expression of these same genes (70,71).

Commercial PCB mixtures have long
been known to be estrogenic (11,12), but
more recent studies focusing on individual
PCB congeners have revealed a complex
array of estrogenic and antiestrogenic effects
(10). Certain congeners appear to act as
estrogens in some assays and antiestrogens in
others. Until recently, coplanar PCBs and
dioxins were considered to be strictly anti-
estrogenic, but it now appears that coplanar
PCBs can act as estrogens in some assays
(72,73). PCBs and dioxins can also disrupt
androgen production (74). The ability of
dioxins to act as antiestrogens and antian-
drogens has spawned a number of studies
assessing the effects of in utero exposure on
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Table 1. Effects of synthetic chemicals on endocrine and cognitive function.

Alters
Estrogen/ cognitive 

Compound androgen Thyroid Glucocorticoids function? References

Industrial chemicals
Bisphenol A A–; E+ ? ? ?

PCBs, dioxins, and furans
Dioxins A–; E– Mixed (↓T4; Mixed Yes (85,86,94,95)

unchanged or (↑C; ↓C;
↓T3; unchanged unchanged or
or ↑TSH) ↑ACTH)

PCBs E+/–; A– Mixed (↓T4; ↓C Yes (82–84,87,88)
unchanged or
↓T3; unchanged
or ↑TSH)

PCDFs E– ↓T4; ↑TSH ? ?
Pentachlorophenol E+; A– G; ↓T4 ? ?

Phthalates
Butylbenzylphthalate A–; E+ ? ? ?
Diethylhexylphthalate ? ↓T4 ? ?
Di-n-Butylphthalate E+ ? ? ?

Alkylphenols
p-Nonylphenol A+; E+ ? ? ?

Organochlorine pesticides
Alachlor E+ ↓T4; ↑T3; ? ?

↑TSH; G
Chlordane A– G ↓C (females) Yes (142)

↑C (males)
Chlordecone (Kepone) E+ ? Mixed (↓C or Yes (128,132–134)

no change)
DDT A–;E+ ↑T3; ↓PBI; ↓C; ↓response Yes (128,135–137)

G to ACTH
DDE A–;E+ G; ↓I uptake ↓C; ↓response ?

to ACTH
Dieldrin A–;E+ G; ↓PBI ? Yes (123–126)
Endosulfan E+ ↑T4; ↓T3; G ? Yes (129–131)
Heptachlor A– ? ↓C ?
Lindane E+/– ↓T4; ↓T3; ? Yes (127,128,143)

↑TSH; ↓PBI; G
Oxychlordane ? G ? ?
Other pesticides/herbicides

2,4-D A– ↓PBI; ? Yes (144)
I uptake

Atrazine A–;E– Mixed (↑T3; ? Yes (145)
↑T4; ↓T3)

Heavy metals
Cadmium E– ↓T4; ↓T3; G Mixed ( ↑C; Yes (146,147)

↓C; or no change)
Mercury A–; E– ↓T3; ↓I uptake Mixed (↓ response Yes (148,149)

to ACTH; or no change)
Lead A–;E– Mixed ↑C Yes (110–121)

Abbreviations: A+, androgenic; A–, antiandrogenic; ACTH, adrenocorticotropic hormone; C, corticosterone; 2,4-D, 2,4-
dichlorophenoxyacetic acid; E+, estrogenic; E–, antiestrogenic; G, goiter; I, iodine; PBI, protein-bound iodine; PCDF, poly-
chlorinated dibenzofurans; TSH, thyroid-stimulating hormone; ?, unknown.



neuroendocrine function, reproductive
behavior, and CNS morphology of male rats
(75–77). Demasculinization and feminiza-
tion of reproductive behavior, as well as fem-
inization of neuroendocrine function, have
been reported, but the only study that
assessed CNS morphology did not find any
evidence of altered sexual differentiation in
the brain (76), so the mechanism for these
effects remains uncertain. In contrast to the
wealth of data available for dioxin, there are
few studies that assess reproductive behavior
and neuroendocrine function after in utero
PCB exposure.

Early PCB exposure can alter function of
the HPA axis (13), suppressing basal and
stimulated corticosterone levels, but effects on
this system have been less extensively studied
than the estrogenic and thyrotoxic effects.
High doses of dioxin alter adrenal steroid
function in adult animals (78,79), but the
effects of in utero exposure on functioning of
the HPA axis have not been assessed.
Glucocorticoid receptor binding was down-
regulated in both the palate and thymus after
early dioxin exposure (80,81). This suggests
that there may be alterations in glucocorticoid
receptor expression in other tissues, including
the brain, after early dioxin exposure. 

In summary, PCBs and dioxins have a
number of documented endocrine-disrupting
effects, which could act individually or in
concert to alter CNS development and cog-
nitive function. Neonatal hypothyroidism
has profound effects on brain development
and cognitive function. Many investigators
have hypothesized that PCBs and dioxins
alter behavioral function through their
actions on thyroid hormones (1,9). Others
have suggested that it is more likely that the
actions of PCBs and dioxins on multiple hor-
mone systems interact in complex ways to
produce CNS effects (55).

Is there evidence to support the con-
tention that PCBs and dioxins impair cogni-
tive function through their endocrine-
disrupting actions? It is clear from laboratory
animal studies that developmental exposure to
PCB mixtures or ortho-substituted PCB con-
geners results in long-lasting deficits in learn-
ing and memory. The evidence for learning
deficits after exposure to dioxin or coplanar
PCB congeners is not as clear. In fact, under
some circumstances exposure to dioxin may
facilitate learning. Early studies in monkeys
exposed to complex mixtures of PCBs via
maternal transfer during gestation and lacta-
tion found long-term deficits in spatial learn-
ing and memory (82). The monkeys were
impaired on two types of spatial learning tasks:
spatial discrimination-reversal learning and
delayed spatial alternation. The deficit on the
spatial alternation task was particularly strik-
ing. The PCB-exposed monkeys were never

able to achieve control levels of performance,
even after an extended period of testing. This
pronounced deficit in spatial learning was
observed when the monkeys were 4–6 years
old, even though they had not been exposed
to PCBs since they were weaned at 4 months
of age. The monkeys were equally impaired at
short and long delays, suggesting a deficit in
learning or attentional processes rather than
memory. 

More recently, Rice and Hayward (83)
exposed monkey infants to a mixture of PCB
congeners formulated to represent the PCBs
typically found in human breast milk, from
birth to 20 weeks of age. Beginning at 3 years
of age, the monkeys were tested on a series of
learning tasks. As in the earlier study, the
PCB-exposed monkeys showed a clear
impairment in their ability to learn a delayed
spatial alternation task. Again, the impair-
ment in spatial alternation was interpreted as
a learning decrement rather than a deficit in
memory. Later, the monkeys in the Rice
study were tested in several operant sched-
ules, including a multiple fixed interval-fixed
ratio schedule (84). The PCB-exposed mon-
keys showed retarded acquisition of the fixed
interval schedule. The results of this study are
particularly noteworthy because the tissue
levels of PCBs after exposure were similar to
the tissue levels typically observed in the
human population. 

In contrast to PCB-exposed monkeys,
monkeys exposed to dioxin during develop-
ment did not show any impairments in spa-
tial learning (85). In fact, they did slightly
better than control monkeys on both spatial
discrimination-reversal learning and delayed
spatial alternation (86). The dioxin-exposed
monkeys were, however, impaired in their
ability to learn nonspatial discrimination-
reversal problems using color or shape as the
relevant cues (85,86). Based on these dis-
crepant findings in PCB- and dioxin-
exposed monkeys, it has been suggested that
the impaired spatial learning in the PCB-
exposed monkeys could be related to the
non–dioxin-like, ortho-substituted PCBs
present in the mixtures (86).

Later rodent studies using individual
ortho-substituted and coplanar PCB con-
geners support this hypothesis. Rats
exposed to any of three different ortho-sub-
stituted PCB congeners (2,4,4´-trichloro-
biphenyl; 2,3´,4,4´,5-pentachlorobiphenyl,
or 2,2´,4,4´,5,5´-hexachlorobiphenyl)
showed impaired learning on a delayed spa-
tial alternation task (87). However, a fourth
ortho-substituted congener (2,2´,3,5´,6-
pentachlorobiphenyl) did not cause spatial
learning deficits, demonstrating that not all
ortho-substituted PCB congeners have the
same effects (88). As in both monkey stud-
ies, the rats with spatial alternation deficits

were equally impaired at short and long
delays, suggesting a decrement in learning or
attentional processes. The same rats showed
no impairments in learning a working mem-
ory task on the eight-arm radial maze. The
spatial alternation deficit was present only in
female rats. Small group sizes had precluded
analyzing for sex differences in the monkey
studies, so this finding came as a surprise. 

More recently, rats exposed to the PCB
mixture Aroclor 1254 were tested on a work-
ing-reference memory task on a 12-arm
radial maze and a spatial reversal learning
task using operant procedures (89,90). Sex-
specific deficits in spatial learning were again
observed. However, in these studies using a
complex PCB mixture rather than individual
congeners, deficits were observed primarily
in male rats. The PCB-exposed male rats
showed impairments in both working and
reference memory on the radial arm maze,
whereas the females were not impaired on
either (89). The PCB-exposed males also
showed a deficit on the first reversal of the
spatial reversal learning task (90). PCB-
exposed female rats were not impaired on
the radial arm maze task but showed a learn-
ing deficit that emerged on the later reversals
of the spatial reversal learning task—a pat-
tern very different from that seen in the
males. Analyses of response patterns on the
reversal learning task revealed underlying
functional differences that explained the dif-
ferent effects in male and female rats. The
first reversal deficit in the male rats was
attributable to a tendency to perseverate to
the previously correct response site. The
female rats did not show an increased ten-
dency to perseverate to the previously correct
lever. Instead, they spent a longer period
responding randomly to the two levers
before finally beginning to associate the
reward with the new response site. Whereas
the males show a deficit early in the task and
were able to overcome the deficit on later
reversals, the female deficit only emerged on
later reversals when the control animals were
becoming proficient at performing the task. 

The reason for the heightened sensitivity
of female rats on some tasks and males on
others is unknown. However, the discrepan-
cies between studies could be partially
explained by the fact that the animals in the
earlier study were exposed to individual
ortho-substituted PCB congeners, whereas
those in the later studies were exposed to a
complex PCB mixture. Certain effects of
PCB mixtures could be either masked or
unmasked when specific congeners from the
mixture are given individually. Nevertheless,
the sex differences in responses suggest that
hormonal influences may be involved. A
spatial learning deficit such as that seen in
the female rats exposed to ortho-substituted
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PCB congeners would be consistent with a
reduction in thyroid hormone. However,
circulating thyroid hormones levels were
assessed in litter mates of the tested animals
(65), and it seems unlikely that alterations in
thyroid hormones were directly mediating
the learning deficit. The three PCB con-
geners had roughly equal effects on spatial
learning but markedly different effects on
thyroid hormone levels. One congener had
no effect on serum T4, one moderately
reduced T4 levels, and one dramatically
reduced serum T4 levels. Furthermore, males
and females showed equal reductions in
serum T4, but only females were impaired on
the learning task. The learning deficits in the
latter studies would also be consistent with a
reduction in thyroid hormone, but again
only one sex was affected (this time males),
whereas Aroclor 1254 is known to dramati-
cally reduce circulating T4 levels in both
males and females (63). This evidence is indi-
rect, but it argues against direct mediation of
the learning deficit by reduced thyroid hor-
mone. Koopman-Esseboom and colleagues
(91–93) also failed to find a relationship
between alterations in nervous system func-
tion and thyroid hormone levels in PCB-
exposed human infants. As discussed above,
Morse et al. (64) found that pups exposed to
PCBs during fetal development had reduced
serum and brain T4 levels, but induction of
type II 5´-deiodinase within the brain
resulted in the maintenance of normal or
near normal brain T3 levels. Because T3 is the
active form of the hormone, these results also
argue against a reduction in thyroid hormone
as the mediating factor in PCB-induced
learning deficits. 

The extent to which changes in other
hormonal systems, or interactions of altered
thyroid function with other hormonal sys-
tems, may play a role in mediating PCB-
induced learning deficits has not been
addressed. As discussed above, thyroid hor-
mones are involved in mediating glucocorti-
coid receptor expression in the brain and can
also influence the actions of estrogen in the
brain (49,56), both directly and indirectly.
As both the glucocorticoid-mediated stress
response and estrogen’s role in the brain are
markedly sexually dimorphic, an interaction
of altered thyroid hormone levels (or altered
thyroid hormone action) with one or both of
these systems could potentially explain the
sex-specific effects that have been observed.
In fact, given the complex and sexually
dimorphic pattern of PCB effects on cogni-
tive function, this seems like a reasonable
scenario. If this were the case, a clear rela-
tionship between thyroid hormone concen-
trations and cognitive deficits would not
necessarily be present. Thus, a reasonable
first step to pursuing this line of research

would be to determine if cotreatment of
PCB-exposed animals with thyroid hormone
ameliorates any of the PCB-induced cogni-
tive deficits. If so, follow-up studies could be
designed to determine if interactions of
reduced thyroid hormone with the estrogen
or glucocorticoid systems are involved in
mediating those specific cognitive deficits. If
not, follow-up studies could focus instead on
determining whether particular cognitive
deficits are mediated directly by changes in
one of these other hormone systems. The
various cognitive effects that have been
reported in males and females after PCB
exposure could be mediated by several differ-
ent hormonal mechanisms, and sorting out
the mechanisms for each behavioral effect
will require a focused, stepwise approach.

In contrast to the findings for ortho-sub-
stituted PCBs, coplanar PCBs and dioxin
did not impair spatial learning in rats (94).
Dioxin-exposed rats did not differ from con-
trols on delayed spatial alternation and actu-
ally made fewer errors than control rats on
the radial arm maze. Although both sexes
showed a trend toward better performance,
the effect was more pronounced in dioxin-
exposed male rats. Rats exposed to coplanar
PCBs showed a similar but less striking
improvement in learning. In a later study
dioxin-exposed rats were tested on additional
spatial and nonspatial learning tasks to deter-
mine whether the apparent facilitation in
spatial learning was specific to the radial arm
maze or would generalize to other tasks (95).
The improved learning on the radial arm
maze was replicated, but was found to be
specific to the radial arm maze. It did not
generalize to other spatial learning tasks,
including the Morris water maze, which like
the radial arm maze is primarily hippocam-
pally-mediated. In addition, the dioxin-
exposed rats showed a deficit in nonspatial,
cue-based discrimination-reversal learning.
This is similar to what was observed previ-
ously in dioxin-exposed monkeys (86).
Another study compared the performance of
dioxin-exposed litter mates on two different
radial arm maze tasks. The first was the orig-
inal 8-arm radial maze task in which all 8
arms were baited, and the second was a 12-
arm radial maze task in which only 8 of the
12 arms were baited (96). Dioxin exposure
improved performance on the 8-arm maze
task in which all arms were baited, but not
on the 12-arm maze task in which only a
subset of the arms were baited, further high-
lighting the specificity of this effect.

Recently Rice and Hayward (97,98)
tested rats developmentally exposed to a
coplanar PCB congener on a series of learning
tasks. The coplanar PCB-exposed rats did not
differ from controls on delayed spatial alterna-
tion (97), visual-spatial or sustained attention

(98) or fixed interval, fixed ratio, progressive
ratio, and differential reinforcement of low
rate operant tasks (99,100). These findings
reinforce the fact that the cognitive effects of
dioxin and coplanar PCBs are limited in
scope, with the primary effect being an
improvement in working memory, which is
seen only in specific radial arm maze tasks.

It is not clear whether the cognitive
changes observed after perinatal dioxin expo-
sure are hormone mediated. However,
dioxin has been shown to alter functioning
of the HPA axis in adult animals (78,79)
and to down-regulate glucocorticoid recep-
tor expression in several tissues during devel-
opment (80,81). Previous studies have
shown that manipulations of circulating cor-
ticosteroid levels (101) or hippocampal glu-
cocorticoid receptor expression (102) can
result in improved spatial learning. Thus, it
is conceivable that early dioxin exposure
facilitates spatial learning on the radial arm
maze by permanently altering hippocampal
glucocorticoid receptor expression. This
hypothesis could be tested by measuring glu-
cocorticoid receptor expression in the hip-
pocampus after developmental exposure to
dioxin, and correlating receptor expression
with spatial learning on the radial arm maze. 

In summary, despite speculation by
many investigators (1,9,56), there is cur-
rently no direct evidence mechanistically
linking either PCB- or dioxin-induced
changes in cognitive function to altered
endocrine function. It is important that
future studies directly assess whether there
are mechanistic relationships between altered
endocrine function and altered cognitive
function after early exposure to these ubiqui-
tous and persistent chemicals.

Lead. Lead exposure early in development
has been shown to disrupt multiple endocrine
systems, including the gonadal steroids (103),
adrenal steroids (104,105), and thyroid hor-
mones (105). The effects of developmental
lead exposure on gonadal function are com-
plex and appear to involve multiple sites of
action. In utero exposure has been reported to
reduce circulating estradiol and luteinizing
hormone levels, delay the onset of puberty
and produce irregular estrous cycling in
female rats, and reduce testosterone levels,
sperm counts, and masculine sexual behavior
in male rats (103,106). The volume of the
SDN-POA was also reduced in male rats
(106). The effects of developmental lead
exposure on the sexually dimorphic pattern
of testosterone metabolism are variable. A
partially demasculinizing (20–40%) decrease
in adult CYP2C11-dependent 2-α and 16-α
hydroxylation and CYP2C11 apoprotein
expression have been observed, along with a
delay in the development of the sexually
dimorphic pattern of hepatic P450 and
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sulfotransferase enzymes at puberty (107).
The findings in both male and female rats are
consistent with dual sites of action at the level
of the hypothalamus-pituitary and directly on
gonadal steroidogenesis (103). 

The effects of lead exposure on adrenal
steroids and thyroid hormones have been less
extensively studied, but both adult (105) and
developmental (104) exposure has been
shown to elevate plasma corticosterone levels.
The evidence for altered thyroid function is
mixed. Some investigators report changes in
circulating thyroid hormones after lead expo-
sure, whereas others do not (8). Although
growth hormone is not a focus of this report,
it is important to note that early lead exposure
also disrupts growth hormone (107), and it is
possible that some of the cognitive effects of
early lead exposure could be related to disrup-
tion of the growth hormone system (108).

Few, if any, developmental neurotoxi-
cants have been more extensively evaluated
for cognitive effects than lead. A large num-
ber of independent investigators have
reported cognitive impairments in develop-
mentally lead-exposed rodents and primates,
and a wealth of epidemiologic data points to
cognitive deficits in lead-exposed children as
well (109). The effects in primates and
rodents include deficits in reversal learning
(110–112), delayed spatial alternation
(113–115), and schedule controlled behav-
ior, particularly fixed interval and delayed
reinforcement of low rates (116–119). A
leading hypothesis to explain the deficits
exhibited by lead-exposed animals on many
of these tasks is that the animals continue to
respond to a previously correct response site
when the reward contingencies change (per-
severation), and/or to respond excessively
and inappropriately. 

Developmentally lead-exposed mon-
keys were impaired on both spatial and
nonspatial discrimination-reversal learning
(110,120,121). In general, they could learn
the initial discrimination problem but
made more errors when the reward contin-
gencies changed on the reversals. Deficits
were especially pronounced on the first
reversal (110). Lead-exposed rats showed a
similar pattern. They could learn an initial
olfactory discrimination but were impaired
on the subsequent reversals (112). The dis-
crimination-reversal deficit in the rats was
not due to perseveration. Analyses of the ani-
mals’ response patterns indicated that the
lead-exposed animals spent longer respond-
ing randomly to the two levers before finally
beginning to associate the reward with the
new cue. They did not perseverate to the
previously correct cue. On spatial alternation
tasks, both lead-exposed monkeys and rats
showed deficits in percent correct responses
that were constant across a series of delays

(113,115). As discussed above, this pattern
suggests a deficit in learning or attentional
processes rather than in memory. On fixed
interval operant schedules, which require the
animal to wait a fixed period of time for
reinforcement, lead-exposed monkeys and
rats showed higher response rates and shorter
inter-response times (116,118). Similarly, on
a delayed reinforcement of low rate schedule,
lead-exposed monkeys were slower to learn
to withhold their responding to the low rate
necessary for reinforcement (119). In sum-
mary, the nature of the cognitive deficits on
a number of different tasks suggests that cog-
nitive processes controlled by the prefrontal
cortex including selective attention and the
ability to inhibit inappropriate responding
appear to be particularly sensitive to lead
exposure. However, the deficit on discrimi-
nation-reversal learning appears to be the
result of a decreased ability to learn new con-
tingencies (i.e., an associative deficit), rather
than a deficit in inhibitory control (112). 

Although lead has been shown to disrupt
multiple endocrine systems, little attention
has been paid to the role changes in endocrine
function might play in mediating the cogni-
tive effects of developmental lead exposure.
Interestingly, lead has recently been found to
impair choroid plexus transthyretin produc-
tion (122). Because transthyretin is responsi-
ble for transport of thyroid hormones into the
brain, it has been suggested that lead could
impair brain development by depriving the
CNS of thyroid hormones. However, there
do not appear to be any studies measuring
thyroid hormone levels in brain after lead
exposure or relating such changes to cognitive
deficits. This could prove to be an important
area for future research. Developmental lead
exposure also increases circulating corticos-
terone levels, which could potentially alter
glucocorticoid receptor expression in the
brain. Finally, as discussed earlier, develop-
mental lead exposure decreases circulating
testosterone levels and demasculinizes the pre-
optic area in male rats. Thus, lead could
potentially alter hippocampal morphology
and spatial learning in male rats. However,
the later mechanism is perhaps not as likely
since the cognitive effects of early lead expo-
sure do not appear to be sexually dimorphic.

Organochlorine pesticides. As indicated in
Table 1, many of the persistent organochlo-
rine pesticides including DDT (and its break-
down product DDE), Alachlor, chlordane,
chlordecone, dieldrin, endosulfan, heptachlor,
and lindane have been identified as endocrine
disruptors (8,59). Most are weakly estrogenic
and some also alter thyroid or adrenal func-
tion. Some organochlorine pesticides have
been evaluated for cognitive effects, but the
majority of the studies involve adult expo-
sures. The question as to whether there are

cognitive effects in developing organisms is
largely unanswered. 

Dieldrin is a persistent chlorinated
hydrocarbon pesticide that was used as a
broad range insecticide until the U.S. EPA
restricted its use in 1974. Although no longer
in use, dieldrin can remain undegraded in
soil for many years. It is lipophilic and readily
bioaccumulates in animals and humans.
Dieldrin exposure during adulthood resulted
in deficits in visual discrimination-reversal
learning in both sheep (123) and squirrel
monkeys (124) and caused rats to make more
errors on a zig-zag maze (125). In contrast,
one study of perinatal exposure to dieldrin
reported facilitated retention of learning on a
symmetrical maze (126). 

Studies of other organochlorine insecti-
cides have been limited almost exclusively to
acute exposures followed by testing in simple
active or passive avoidance paradigms and
have yielded mixed results. Lindane is a
chlorinated hydrocarbon insecticide as well
as a human and veterinary ectoparasiticide,
which continues to be prescribed for the
treatment of body lice in humans. It is a
powerful neurostimulant capable of causing
convulsions and electroencephalogram dis-
turbances. Acute exposure to lindane in the
early postnatal period resulted in an appar-
ent facilitation of acquisition on a passive
avoidance task (127). However, the lindane-
exposed animals also showed significant
reductions in spontaneous motor activity, so
these data must be interpreted with caution.
Changes in locomotor activity can influence
avoidance behavior, with hypoactivity favor-
ing correct responding in passive avoidance
paradigms and hyperactivity favoring correct
responding in active avoidance paradigms.
Acute exposure to lindane during adulthood
did not alter acquisition of a passive avoid-
ance task, but did cause significant deficits in
retention when animals were retested 7 days
after the original training (128). In contrast
to the passive avoidance task, lindane-
exposed rats did show deficits in acquisition
of an active avoidance task. Responding
between trials was not significantly different
between groups, suggesting that the effect of
lindane on active avoidance learning was not
due to a reduction in locomotor activity. 

Endosulfan is an insecticide in current
use. Chronic exposure of either immature or
adult rats to endosulfan resulted in learning
and memory deficits in an active avoidance
task where the rats were required to jump to
a pole suspended from the ceiling of the
chamber in order to avoid shock (129–131).
Chlordecone, or kepone, is a polycyclic chlo-
rinated hydrocarbon that was used primarily
as an insecticide. Studies assessing the cogni-
tive effects of chlordecone have yielded
mixed results. Tilson et al. (132) reported

Environmental Health Perspectives • VOLUME 109 | NUMBER 12 | December 2001 1203



that acute exposure to chlordecone in the
early postnatal period did not result in any
deficits in learning of a two-choice visual dis-
crimination-reversal task. Larger doses of
chlordecone given to adult rats also did not
result in any deficits in acquisition or reten-
tion of a step-through passive avoidance task
(128). Acute exposure of preweanling rats to
chlordecone did not lead to deficits in acqui-
sition of passive avoidance, but when the rats
were retested 6 days after the original train-
ing, a memory deficit was observed (133). In
contrast, pups were impaired on both learn-
ing and retention of active avoidance tasks
(134). DDT, once widely used in the
United States as an insecticide, has been
banned from use since 1973. However, it
continues to be used in other parts of the
world and continues to present a health haz-
ard. Tilson et al. (128) found few effects of
DDT on the ability of rats to learn active
and passive avoidance tasks. However, other
researchers have reported impaired acquisi-
tion on active avoidance tasks (135,136), as
well as impaired retention on passive avoid-
ance tasks (135–137).

In summary, the data on cognitive effects
of organochlorine pesticides are sparse, and in
most cases, the tests that have been used to
measure cognition are simplistic. The results
do suggest that many of the organochlorine
pesticides have the ability to interfere with the
acquisition and use of new information.
However, the literature on both the endocrine
and cognitive effects of organochlorine pesti-
cides remains too sketchy to form useful
hypotheses about the possible endocrine
mediation of cognitive deficits. 

Other chemicals. A number of other
chemicals including compounds such as
phthalates and bisphenol A, which are used
in the manufacture of plastics, and alkylphe-
nols, which are breakdown products of
chemicals used in detergents, have been iden-
tified as endocrine disruptors. Most of these
were first identified as having estrogenic
activity (59), but some were later found to
disrupt thyroid function as well (8). At this
time, the data on cognitive effects from any
of these compounds is sparse (138). 

Concluding Remarks

Although it is reasonable to hypothesize that
central nervous system effects of endocrine-
disrupting chemicals are mediated by inter-
ference with hormone action, mechanistic
studies establishing causal relationships
between the hormonal actions of environ-
mental chemicals and their cognitive effects
have not been conducted. At present, the
only study we are aware of that establishes a
direct link between hormone disruption by
an environmental chemical and nervous sys-
tem dysfunction is a study by Goldey and

Crofton (139), which showed that PCB-
induced hearing loss closely resembles the
hearing loss seen after propylthiouracil treat-
ment and can be prevented by cotreatment of
PCB-exposed pups with thyroid hormone.
Our own research has demonstrated that if a
relationship between alterations in thyroid
hormones and PCB-induced cognitive dys-
function exists, it is likely to be considerably
more complex. The complexity of this issue
and the science needed to address it should
not keep us from moving forward. 

Mechanistic studies directly addressing
the relationship between endocrine disrup-
tion and the documented cognitive deficits
caused by chemical pollutants such as PCBs
and lead are desperately needed. For exam-
ple, thyroid hormone replacement studies
similar to those used to investigate the rela-
tionship between PCB-induced reductions
in circulating thyroid hormone concentra-
tions and hearing loss would be a first step
toward determining the role, if any, of
reductions in thyroid hormones in mediat-
ing specific PCB-related cognitive deficits.
However, as we embark on such studies it is
important to keep in mind that it is unlikely
that all of the cognitive effects of a particular
compound such as PCBs will be mediated
by a single mechanism. It is more likely that
the multiple endocrine effects caused by
PCBs interact in complex ways to produce
the various cognitive effects that have been
reported. Sorting out these interactions will
require a focused, stepwise approach. It is
also important to keep in mind that typical
animal models in which high concentrations
of the chemical are given during a narrow
window of development may not be relevant
to the human condition in which exposures
are much lower and occur over an extended
period of time. In future studies it will be
important to use animal models that are
more relevant to the human situation.

An important caveat is that endocrine
disruptors such as PCBs and lead can also
have direct effects on the nervous system,
and these direct actions undoubtedly con-
tribute to the cognitive deficits induced by
these compounds. For example, PCBs have
been shown to interact directly with ryan-
odine-sensitive calcium release channels,
altering calcium signaling in neurons (140),
and lead has been shown to act as an antago-
nist at the N-methyl-D-aspartate receptor
(141). The relative importance of direct
mechanisms versus indirect endocrine-
related mechanisms in mediating the cogni-
tive deficits induced by these compounds
remains to be determined.

Finally, more extensive studies of the cog-
nitive effects of other endocrine-disrupting
chemicals such as organochlorine pesticides
that are still in active use, components of

plastics and cosmetics such as phthalates and
bisphenol A, and alkylphenol breakdown
products from detergents are desperately
needed. These studies should be designed
with the goal of determining mechanisms,
not just screening for cognitive effects. It is
only through the active and continued pur-
suit of this challenging research area that we
will gain the knowledge we need to protect
the health of future generations.
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